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ABSTRACT
3531

Correlated closed-shell and open-shell functions (due to
Roothaan and Weiss) are analyzed in terms of a 1/2Z expansion
to obtain the corresponding first order wave functions and the

second order energy. The need for expanding the open-shell

%

functions in powers of Z ° is demonstrated. The contributions

to the second order energy from radial and angular correlation

are estimated. /Zﬁngj{
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I. Introduction

In discussing the energy of the helium isoelectronic sequence, it
is instructive to develop it in a series in inverse powers of the
nuclear charge 2 , viz.,

2 -1
E=12 E0 + ZE1 + E2 + Z E3 + ... (1)

The very accurate variation-perturbation calculations of Scherr and
Knight} according to Hylleraas' method%, provide the energy coefficients
through the thirteenth order. These combined with Linderberg's3 1/2
analysis of the Hartree-Fock (H-F) energies permit an elucidation of
the correlation energy4‘(E(corr)) in terms of the 1/2 series. We
concentrate our attention on the leading term,-'Ez(corr) = Ez(exact) -
EZ(H-F), and compare the efficacy with which selected functions
reproduce this term,

Correlation may be introduced into a wave function in a number of
ways4. These include the explicit introduction of an interelectronic
coordinate, Ty, OT 912, and configuration interaction (C.I.), or a
combination of the two. As a by-product of their perturbation cal-
culations, Scherr and Knight5 obtained the values of E2 (Eq. (1))
corresponding to a C.I. function combined with the Legendre functions
g‘g (cosQ%Z) for ‘jz = 0,1,2 . By a variational treatment, Roothaan
and Weiss® obtained closed- and open-shell wave functions containing
terms in Ty for several members of the He sequence. We analyze
the R-W functions in terms of a 1/Z expansion. From the first order
functions, both EZ‘ and E3 may be obtained. Fer Ej, numerical.
inconsistencies, discussed in the appendix, precluded detailed analysis.
However, for E, it proved possible to calculate‘the separate con-
tributions from the R-W orbital and correlation functions., This enabled
1. C. W. Scherr and R. E. Knight, Rev. Mod. Phys. 35, 436 (1963).

2, E. A, Hylleraas, Z, Physik 65, 2091 (1930).
3. J. Linderberg, Phys. Rev, 121 816 (1961).

4, P, 0, Lbwdin, Advances in Chemical Physics II, New York, 1959, p.207.
5. C. W. Scherr and R. E. Knight, J.:Chem, Phys. 40, 1777 (1964).

6. C. C. J. Roothaan and A, W. Weiss, Rev. Mod. Phys. 32, 1% (1960).
Hereaftef¥, we refer to this work as R-W.



us iv estimate the amounts of radial and angular correlation energy
included in E2 for their functions. It is in these terms that we
compare in Table I the R-W functions with the others mentioned above.
In order to establish our notation, the necessary formalism of
the 1/Z perturbation expansion is set down in Section II, and the

results are discussed in the final section.
II. 1/Z Expansion of Correlated Functions

It is convenient to make the transformation

IR PR AL RV (2)

which scales the unit of 1ength7 by the nuclear charge Z . Thus, the

s . . 8
non-relativistic SchrBdinger equation becomes

wy+zp Y@ -2252 Ve .
For the He sequence,
=5 (V2+ V- AP+~

is the hydrogenic Hamiltonian for two electrons and

H=/O"1

1 12

is the interelectronic potential. The wave functions for the 1S
ground states of these two electron systems factor into an anti-
symmetric spin function and a symmetric function of the spatial
coordinates of the electrons. Since we are using a spin-free
Hamiltonian, the spin function is left out of further consideration.
We follow the usual Rayleigh-Schrbdinger perturbation develop-
ment in expanding E(Z) and SPZZ) in powers of the perturbation

parameter 1/Z . Thus, we write

7. Tge unit of length is Za, and the unit of energy is 1 Hartree =
e"/a throughout this paper.

8. The notation F(Z) 1is used to indicate the Z dependence of
various quantities explicitly. Those not so marked are indepen-
dent of Z°.




YJ(Z) = Zh Tn 2", E®@) =-Z'n E_ 2 (3)

With the normalization chosen to be

Yo [Y@)-CH [HS -1, @)

The following relations are readily derived9:

P, - 7 e - Py ®

(Po |9~ | ©
o= (Poln [ Po)= e (B, | m) Py)-om,
g = (o - 5l B, e 0

Yo - 0z Ay Py Xa, Py - ®)

We impose the additional normalization condition

Lo sy =, )

and expand @(Z) and :?((Z) in powers of Z-1 s

9. See, for example, the discussion of perturbation techniques
by J. O.Hirschfelder, W. Byers Brown, and S. T. Epstein,
Advances in Quantum Chemistry I, 1964, Academic Press, New York.
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For these expansions to be consistent with that given in Eq. (3),

-n
Zn 27X (P, - (11)

1]

it follows that
\I/O"q’o Xo ’ (12)
Y -9, X, + 0, X, | (13)

1

and so forth. Eq. (5) then fixes ;xb and ¢0 to be

' -1

-XO =1 ’ ¢0 = 77‘ eXP('lol -/2) . ‘ (14)
Eq. (6).becomes

' I¢OX1> * 40 [ o, > =0 (15)

Because of the normalization chosen for @(Z) , Eqs. (6) and (9),
each term in Eq. (15) is separately zero. Substituting from
Eqs. (12), (13) and (14) into Eq. (7) we find

E, = <¢0'H1’E1'¢0X1> + <¢o '31'E1’¢1> 5

(16)
XD+ B8y

To calculate these separate contributions to E2 we need to find
X, end 9

We deal first with  X(z, /?2) of Eq. (8). Since the R-W
correlation functions for various Z are power series in r

12 »
we may write Eq. (l1) in the form

X, (7 - 1% 2™ X, - ézfn % V. /?2‘“’ (a7




where, according to Eq. (14), YOO =1, XOm =0, m » 0. For
n ) 0, the Xnm 5> and in particular the 71m which define Xl s
were obtained by the least squares analysis described in the appendix.

The R-W orbital functions (§ of Eq. (8)) are of the form

¢(Z9/0 ”02) = ?(Z,[ol) %{Z, pz) + P(Z, /01) V(Z,/’Z) (18)

where, for the closed-shell case Y= }b . The analysis is slightly
less straight forward than that for the correlation function. It
turns out that, for the open-shell function, the individual ¢m of
Eq. (10) are given correctly, not be expanding the one electron
functions.'590(2) and )J(Z) separately in powers of Z-1 but

3
rather  in powers of Z-%. This is most readily demonstrated by

introducing the functionsl1

u(Zz, /oJ) 2-!5 [-SO(Z, PJ) + }é(z) [dj)] P) (19-a)
vz, L) 272 [P(z, Py - ¥, /’j>] (19-b)
where the ‘,p(z, /J,) ‘and %(Z, f’j) are normalized to satisfy

Eq. (9).

The orbital function may be rewritten in terms of u and v ,

0z, Pys L) = uz, PPu A) - v, Pvz, L) . (20)

Thus, the open-shell function may be put in the form of a super-

position of two closed~-shell functions, Since the R-W functions
were obtained by a variational procedure, the Z~independent term of
their orbital functions is exactly ¢0 given by Eq. (14) (to the
numerical accuracy of their calculations). It follows that the 2-

independent term of wuu is @

10. W. Byers Brown, University of Wisconsin Theoretical Chemistry
Institute Report. TCI-49,

0 and that of vv is identically zero.

11, See, for example, C. A. Coulson and I. Fischer, Phil, Mag. 40,

386 (1949); Sir Lennard-Jones and J. A. Pople, Phil. Mag., 43,
581 (1952).




Since, according to Eq. (10), @(2) admits only integral powers of

Z-l , the expansions for u(Z) and v(Z) must be

u(Z) = Z z’ " u Z Z-(n+%) v

v(z) = n=0

ntk (21)
Substituting these expansions into Eqs.(19), we find

-5 [ ok -1 ]
u(Z) +v(Z)] 2 u0+Z v%+Z u1+ ,

= 2.”15 [u(Z) - V(Z)] 2-% [uo - Z-%v% + Z-,lul - ]

In the special case of the closed-shell functions ?(Z) = }0(2)

and therefore v(Z)= 0.

]

= z'% ”

\S
~
3]
~
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The comparison of Eq. (18) with Eq. (9) shows that

%0 = 901wt )
B, = ug(P) u (/) + u (/D) uy(fF) - v (L) w( ) (22)

The functions uy and v% were obtained by a least squares analysis

of Eq. (21), as described in the appendix.
III. Results and Discussion

The last column in Table I lists the values of E2 for a few

selected functions, and also the values of EZ( Xl) and E2(¢1)
calculated according to Eq. (16). For the R-W functions we also

obtained E2 by a least squares analysis of the total energies.

The values of " E2 " so obtained agree with the sums'’ E2~(¢1) + EZ(XI)

to:ét;f least ome.in the fourth decimal place. This allows us to make
some quantitative deductiens.
It is apparent from the data collected in Table I that

Ez(corr) = -0,0466 a.u. We may further subdivide Ez(corr) into
12
contributions from radial and angular correlationsll’ .

12. G. R. Taylor and R. G. Parr, Proc. Nat. Acad. Sci. (U. S.)
38, 154 (1952).




With the help of E2 for the radial limit fu'nction,3’13 which we
assume contains all of Ez(rad), we obtain for the exact function
E2(rad) = =0.0143 a.u, and Ez(ang) 6 -0.0324 a.u... For the C., I.
functions involving Legendre polynomials of coselz, such as analysis
of E2 follows directly from the calculations of Scherr and Knights.

For the R-W functions we estimate the radial and angular con-
tributions to 'Ez , Shown in Table I, by means of the following |
arguments, We first note that for their closed-shell functiom - -

E (¢1) can contribute only to E (H F) the remainder (-0.0460 a.u.)
of E (H-F) must come from .E 0)11) . The remaining part of E207(1)
for the.closed -gshell, namely -0,0440 a.u., must be attributed to
correlation effects, both radial and angular,

We now assume that for the open-shell function E2(¢1) -.and
Ez()él) make the.same contribution to EZ(H-F) as they do in the
closed-shell case, namely =-0.0650 a.u. and -0.0460 a,u., respectively.
Certainly the R-W open-shell function describes radial correlation
better than the R-W closed-shell function., Since. the correlation
functions are of the same form in the two cases, we expect them both
to describe angular correlation about equally well, Therefore, we
assume that the difference of -0.0022 a.u. between the total
E2(open) and E2(closed) gives precisely the difference between
-E,(8))

= -0,0068 a.u. is also due entirely to radial correlation. At this

Ez(rad) for the functions. Clearly, the difference E2(¢1)open

point we have only to account for the discrepancy of 0,0005 a.u.
between the exact E2 and that obtained for the R-W open-shell
function. We have arbitrarily assigned 0.0003 a.u. of the discrepancy
to the angular part. and 0.0002 a,u. to the radial part of Ez(corr).
Thus, a little arithmetic enables us-to estimate the radial and

angular contributions to E (corr) for both R-W functions.

13, H. L. Davis, J. Chem. Phys. 39, 1827 (1963).

14. Although one expects some contribution to EZ(H-F) from )é (r1 ),
its magnitude is somewhat surprising. This Serves to empha31ze
the importance of optimizing the orbital and correlation function
together in a variational calculation,

closed



It is evident from Table I that an open-shell trecatmcat is
essential to describe radial correlation fully since even the cor-
related closed-shell function cannot do so. Angular correlation is
introduced more efficiently by powers of P than by Legendre

12

polynomials l:t(coselz) . Clearly, the terms of r 2 and r124
are equivalent to 1 = 1 and 1= 1,2 functions, respectively. The

and T introduce higher order Légendre poly-

. 3
12 12
nomials whose contributions are not negligible. To a large extent

odd powers

the success of the R-W functions may be attributed to the inclusion

of these odd powers of Iy, -




Table I. Approximate Contributions to E2 from the

'Independent Motion' of the Electrons, and from Radial and Angular Correlationsf

EZ(H-F) , Ez(radial) sz(angular) E2
Independent Radial Angular Total
Wave Function Motion Correlation Correlation
1. Closed-shell - Hartree-Fockﬁ 0.1110 0.0 _ 0.0 0.1110
2. Open-shell - Legendre Expansion ¢
=0 0.1110 0.0143 0.0 0.1253
L£=0+4=1 0.1110 0.0143 0.0264 0.1518
L=0, +L=1, + £=2 0.1110 0.0143 0.0301 0.1554
3. Correlated closed-shelld
Eo(9;) 0.0650 0.0 0.0 0.0650
E,( )( 1) 0.0460 0.0119 0.0321 0.0901
Total 0.1110 0.0119 0.0321 0.1550
Least squares total = =esece ecmeemw e-eee- 0.1551
4. Correlated open-shelld
E2(¢i) 0.0650 0.0068 0.0 0.0718
E,( )(1) 0.0460 0.0073 0.0321 0.0854
Total 0.1110 0.0141 0.0321 0.1572
Least squares total === 0 eee-==a eceseee ee---- 0.1572
5. Exact® 0.1110 0.0143 0.0324 0.1577

a. All energies in -é2/30
b. Reference 3.
e+ Reference 5.
d. This work; analysis of functions given in Reference 6.
e+ Reference 1.
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IV. Appendix

In unnormalized form, which we indicate by subscript u , the R-W

functions are
¥ @) = X Gy 8,255y

X, (@7 pp) = t ®k Skrlzk

k=0

0,xy.rp) = Y 2r) Y,r) + K@) L),

- exp - = kK
?u(z,rj) exp (f rj) =0 % ; rj
i B, gk ok
}()u(z,rj) = exp (-5 rj) = bk S r
In these equations ak’bk’ck and 5 are all functions of Z .19 For the

closed-shell of course, a =b  and ¢u = ﬁu ‘ﬂu .

The least squares analyses therefore all involve the solution of

an over determined set of equations of the form

A 4
- 2 gm m -
D(Z,y) = L5 2 =0 Yom? (A-2)

with vy =/0j or /012 , and the coefficients dnm are to be determined.
The function D(Z,y) 1is known for Z = 1,2,3,4,6,8,10 and for a range
of values of y .

After scaling according to Eq. (2) and normalizing to satisfy

Eqs. (4) and (9) we obtain, for the correlation function !

4
D(z, (1)) = kz=:0 Y@ A, (4-3)
vhere ¥.(2) = (£ /2)* ¢ (2) [<¢ @ | 9,z K@ @Y (Z)>J %
k k u u u u
- (A-4)
The right hand side of Eq. (A-1) is then equivalent to
N N 4
-n ) -n m
rg) ™ X, - n?O 2 :fgo Sn (12~ (4-5)

15. We used the values obtained from the R-W computer output rather than ‘
the rounded numbers given in ref. 6, with improved results. !
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= S- where S— is the Kronecker delta.
m Om Om

There are two sources of inconsistency among the input data D(Z,/?z)

As noted in the text, YO

calculated for given Z and ,‘12 . Firstly, Roothaan and Weiss
carried out the optimization to different degrees of accuracy for
different Z . Secondly, they used the same expansibn length up to
k = 4 in Egs. (A-1) and (A-3) for all Z despite the fact that
correlation effects are relatively more important for small Z than
for large Z . We set M = 4, in Eq. (A-2), corresponding to km =4

ax
in Eq. (43). To test the sensitivity of the rnm (in particular

Ylm) of Eq. (A-5) to these inconsistencies, least squares analyses'16
were carried out using different values of N in Eq. (A-2) and
varying the range of 1012 over which the function D(Z, /012) was
evaluated, We used in all combinations the ranges of.Pl2 = 0.1-2.0,
0.1-3.0, 0.1-4.0 ZaO

values of N were not practicable since the equations (A-2) rapidly

and the expansion lengths N = 3,4 ,5 . Larger

approached degeneracy as N increased. This is due to the fact that,

for the 2 values used, the quantities zk Zk“n which arise in

the analysis rapidly approach a constant value as N is increased.
As a test of the quality of our analysis the Xl(/olz) which

we extracted were used to calculate the integral <¢0¢0X1>, which

should be zero according to Eqs. (6) and (l5). As is seen from

Table A-1, this integral is sensitive both to the range of 1012 used

and the expansion length N . The results of the best case,

0.1 £ /2,£2.0 and N=4

accurate to about four decimal places. We further tested the con-

, suggests that the Xl obtained are

sistency of the R-W correlation functions by relaxing the constraint
¥om = S,Om . For 0.1 & 1'0125: 2.0 and N = 4 we obtained from
a new least squares analysis rOO = 1.0004 (instead of exactly 1)
and all (Om , mp»Ll, less than 4 x 107% in magnitude. It seems
safe to assume, therefore, that the xlm listed in Table A-2
represent Xl of the R-W correlation function to about four decimal
places. The integrals E,( xl) = <¢0 | H -E; | ¢0x1> are also
probably accurate, in the best case, to about four decimal places.

16. J. B. Scarborough, Numerical Mathematical Analysis, (Johns
Hopkins Press, Baltimore, 1950) Art. 113.
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For the orbital functions u(Z,/‘}) and v(Z,/CG) given by
Eqs. (19) and (21) the least squares analyses were essentially the
same as for the correlation functions. Now, '

A ‘ 4
D(Z, /oj) _=7T%exp[ (L -§/2) /"J.] E)‘(d A /"jk (A-8)

for u(Z,/oj), énd |
| . &
) - z ypE
2z, 00 = @M e [ - E/D L] 5 A BP9

for v(Z,Iﬁz) .. The a(k and /JL in these two equations are related

to the a, and bk of Eq. (A-1) by

«, (2) = 2-%(}' /2)* 2, (&) [<¢u(z"ol’/oz), ¢xl(zé/ol’f2.)>‘] *

and similarly for lé?k with a, replaced by b The form of

, k k °
Eqs. (A-8) and (A-9) was chosen so that in Eq. (21)

u, = exp(- ) Emf—; L P (S L}

M

with dOm = JZ)m , according to Eq. (14). As in the analyses for the

correlation function, we set M = 4 in Eq. (A-2). In this case,

<
]

however, an error is thereby introduced since the exponential in

D(Z,/CG) yields non-yanishi?g terms in rj5 and higher powers.

We estimated the term in rj to be at least ten timgs smaller than

that in rj4 . We expect that the neglect of terms r?j,:léks ,

introduced errors no larger than the others inherent in our treatment.
According to Eqs. (4) and (9) the integral <:¢0 '¢i:> =0 for

an exact treatment., We used the value of this integral to select

the optimum range of /‘g and expansion length N over which to

fit the orbital functions. Typical results are given in Table A-II

where we also list the corresponding values of E2(¢) . In addition,

Table A-II shows.thé»importance of the terms vy vy o, Eq. (22), in

recovering all of @ for the open-shell function. For the closed-

1 >

shell, of course, vy =0.
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The best set of expansion coefficients dlm’ ,le, Ylm which
define J(l and ¢1 » Egs. (A-5), (A-10), (A-11) and (22),6are listed in
Table A-III. There we also list the coefficients of a Laguerre expansion
of ¢1 , for the R-W closed-shell function and compare them with the
coefficients of the Laguerre expansion of ¢1 for the H-F function
reported by Linderberg3. It is apparent that ¢1 for the R-W and ‘H-F. .
functions are considerably different. This serves to illustrate the
significant change in an orbital function when it is made part of a
correlated function.

Because of the errors in ¢1 and )(1 the sum E2 = E2(¢1) + EZ(;('l)
may be less certain than the values of the individual terms. We
checked these calculations with a least squares analysis of
[ﬁ(z) - (-22 + 52/8{] where the E(Z) are the total energies
reported by R-W for various Z . The valuesof:E2 listed in Table I 3and
labeled least squares correspond to an analysis including terms up to
2-3 . 1t was not possible to obtain reliable results by including
higher order terms because of the difficulties caused by near degeneracy,

as discussed above.
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Table A-I. Integrals Involving )(1 for Typical Least Squares Analyses.

Range of; Closed-Shell Open-Shell
N A | <% Xy B (X)) | <%%X) B XD
3 0.1-2.0 -0.00176 -0.09002 -0.00243 -0.08550
3 0.1-3.0 -0.00173 -0.09003 -0.00242 ..-0.08531
3 0.1-4.0 -0.00173 -0.09003 -0.00242 -0.08531

4 0.1-2.0 +0.00001 -0.09006 +0.00046 -0.08544
4 0.1-3.0 +0.00044 -0.09024 +0.00076 -0.08556
4 0.1-4.0 +0.00043 -0.09023 +0.00075 -0.08556
5 0.1-2.0 -0.01019 -0.08619 +0.00130 -0.08594

5 0.1-3.0 |  -0.00450 -0.08842 +0.00199 -0.08628




16

Table A-II. Integrals Involving ¢1 for Typical Least Squares Analyses.

Open-Shell neglecting Open-Shell
Range of Closed-Shell terms in V% v§ including terms in v%v%
¢
1

NP L8, 9) E) By E, (9o E ()

3 0.2-6.0 -0.00015 -0.06540 -0.06982 -0.08627 ~-0.00385 -0.07157

3 0.2-8.0 =0.00270 =-0.06475 =--=-=== <c-cccecc amcm-sme =-=---e-
3 0.2-10.0 -0.02309 =-0.06372 =-===-==x =-ccc=a- =mcccce=  am--e-e-
4 0.2-6.0 -0.00063 -0.06503 -0.07261 -0.08668 =-0.00095 =-0.07156
4 0.2-8.0 +0.00002 =-0.06495 =---=-== ==c=cec= smcece-s= =s-===--
& 0.2-10.0 +0.00671 <-0.06524 =-=-==== <==c-ccme scc--c=  =mm-me-
5 0.2-6.0 -0.00203 -0.06479 -0.07807 -0.08782 +0.00003 -0.07180
5 0.2-8.0 -0.00260 =-0.06280 ==-==-== =-c=ccc= =cccmmcn  eec---e-

5 0.2-10.0 -0.02018 =0.05267 ======-= e~e=c=-=== =ccmcce= —oceee--

-—
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Table A-III. Dest
Open-Shell Functions?.

and ¢1 Extracted from the R-W Closed-: and

Expansion Coefficients

Function m=0 m= 1 m= 2 m= 3 m =4
§;°S§2:§?e11’ -6.85438(-1)  4.57998(-1) -6.67453(-2) 5.15773(-3) -2.33259(-4)
L. §3°s§§:jg§11' -1.68359(-1) -1.48636(-2)  6.73491(-2) -9.84627(-4) -1.77761(-4)
¢ open-shell
I oo hes) | "6-48660(-1)  4.59509(-1) -9.16084(-2) -1.24098(-2) -6.76246(-4)
¢(1 , open-shell
m » -2.13050(-1) -2.76269(-2) 1.38740(-1) -1.95621(-2) 1.06825(-3)
Eq. (A-10)
ﬁﬁm’ open-shell, -8.68962(-4) -2.37916(-3)  1.81352(-1) -4.32272(-2) 2.84416(-3)
Eq. (A-1l)
Alm, closed-shell®  8.64865(-2) 4.32473(-2) -4.67571(-3) -8.63198(-5)  2.22201(-6)
M, HE° 1.56250(-1)  7.81250(-2) =-5.20833(-3) -3.25521(-4) -1.62760(~5)

a. The number in parenthesis indicates the power of ten by which the corresponding entry
is to be multiplied. For example, 6.73(-2) = 0.0673.

b. Expansion according to ¢1 = ﬂ“-l ec A1 -/’2) é’u /\lm [Lm+l(2 /al) + Lm+1(2/02)]
m=

-(n!)?

n-1
where Ln(x) = p (-x)k/(n-k-l)!(k+1)!k! are the Laguerre polynomials.
k=0

c. Laguerre expansion of @. (H-F) from reference 3. Allowance has been made for
the different normalization used there.



